Deep3DFaceRecon 2D图像转3D模型实战
本案例通过Deep3DFaceRecon_pytorch实现
前置文档:
https://github.com/sicxu/Deep3DFaceRecon_pytorch
https://blog.csdn.net/flyfish1986/article/details/121861086
本文是在本地没有gpu硬件的支持下的实现方案,并不具体描述部署过程,部署过程建议看上面两个文档地址
准备工程文件
将下载好的Deep3DFaceRecon_pytorch工程文件(详见https://blog.csdn.net/flyfish1986/article/details/121861086中百度网盘的地址)
解压到本地(这个工程已经包含20epoch模型,不用再去谷歌网盘下载了)
项目根目录创建environment.sh
apt-get update && apt-get install -y --no-install-recommends pkg-config libglvnd0 libgl1 libglx0 libegl1 libgles2 libglvnd-dev libgl1-mesa-dev libegl1-mesa-dev libgles2-mesa-dev cmake curl libsm6 libxext6 libxrender-dev # export PYTHONDONTWRITEBYTECODE=1 export PYTHONUNBUFFERED=1 # for GLEW export LD_LIBRARY_PATH=/usr/lib:$LD_LIBRARY_PATH # nvidia-container-runtime export NVIDIA_VISIBLE_DEVICES=all export NVIDIA_DRIVER_CAPABILITIES=compute,utility,graphics # Default pyopengl to EGL for good headless rendering support export PYOPENGL_PLATFORM=egl cp docker/10_nvidia.json /usr/share/glvnd/egl_vendor.d/10_nvidia.json pip install --upgrade pip pip install ninja imageio imageio-ffmpeg
pip install trimesh==3.9.20 -i https://pypi.douban.com/simple
pip install dominate==2.6.0 -i https://pypi.douban.com/simple
pip install kornia==0.5.5 -i https://pypi.douban.com/simple
pip install scikit-image==0.16.2 -i https://pypi.douban.com/simple
pip install numpy==1.18.1 -i https://pypi.douban.com/simple
pip install matplotlib==2.2.5 -i https://pypi.douban.com/simple
pip install opencv-python==3.4.9.33 -i https://pypi.douban.com/simple
pip install tensorboard==1.15.0 -i https://pypi.douban.com/simple
pip install tensorflow==1.15.0 -i https://pypi.douban.com/simple
pip install kornia==0.5.5 -i https://pypi.douban.com/simple
pip install nvdiffrast==0.2.7 -i https://pypi.douban.com/simple
pip install ninja -i https://pypi.douban.com/simple
这一步主要是初始化环境,包含:安装python库等
修改文件util/nvdiffrast.py:
# if self.glctx is None: # self.glctx = dr.RasterizeGLContext(device=device) # print("create glctx on device cuda:%d"%device.index) if self.glctx is None: self.glctx = dr.RasterizeCudaContext(device=device) print("create glctx on device cuda:%d"%device.index)
这一步需要将OpenGL的依赖替换为cuda的,不然会报错:https://github.com/sicxu/Deep3DFaceRecon_pytorch/issues/81#issuecomment-1918455559
在openbayes上申请帐号
https://openbayes.com/注册帐号,充值一些钱(用于租赁gpu服务器)
数据仓库-数据集中将刚才准备好的工程目录打包成zip并上传(会自动解压)
模型训练-创建新容器
启动等待分配资源,启动成功后进入shell
容器中运行
因为我们把数据集挂载到了/openbayes/home
所以我们的工程也在/openbayes/home中
①运行我们刚才创建好的environment.sh
sh environment.sh
②安装最新的nvdiffrast
git clone https://github.com/NVlabs/nvdiffrast.git
pip install .
③执行根据图像生成3D模型的脚本
python test.py –name=model_name –epoch=20 –img_folder=./datasets/examples
运行后,会将./datasets/examples中的20张人脸图片生成20个obj3D模型文件
你也可以自己放照片进去来实时生成人脸模型
原始图片路径:/openbayes/home/datasets/examples
生成模型路径:/openbayes/home/checkpoints/model_name/results/examples
/openbayes/home/datasets/examples/detections中要放一个和图片文件名一样的txt文件
里面是5*2的10个数字,是左眼、右眼、鼻子、左嘴角、右嘴角的坐标(临时可以通过截图工具获取并手动生成此文件)